Humanitarian Engineering:
Transitional Refugee Shelter
Mountaintop Pilot Project: Summer 2013
Julia Klitzke, Ivy Ochieng, Kathryn Stevens

Our Solution:
Earthbag construction uses abundantly available soil as the main structural material

The Problem:
To develop housing for under-resourced parts of the world

Our Objective:
To develop a transitional shelter for refugees that can be simply built using local materials

Key Design Points:
- Simple construction process
- Relatively inexpensive
- Reduced impact on host environment
- Easily acquired materials
- Use of local materials
- Sturdy structure
- Personalizable design
- Security
- Modular potential

Earthbag Wall: Construction Process

Test #1, Wall #1 (7/8 - 7/9)
Purpose: Determine how to create an earthbag wall
Results:
- Process is labor intensive
- Earthbag sizes inconsistent
- Difficult to create high walls without scaffolding
- Process goes faster with more workers
Questions Generated:
- How do you reduce amount of labor per home?
- How do you connect walls?
- Ideal soil amount to fill bags?

Test #2, Wall #2 (7/15)
Purpose: Determine the stability of a single-row stacking pattern and how to construct corners
Results:
- “Single” row steps are stable
- Slope = 23°/53” = 0.434
- Height does not increase fast enough to stay within limited footprint
- Corner is very stable
Questions Generated:
- How do you increase slope of steps?

Test #3, Wall #3 (7/17)
Purpose: Determine the stability of a double-row stacking pattern and the resulting corner
Results:
- “Double” row steps are stable
- Slope = 31°/33” = 0.94
- Height does increase fast enough to stay within limited footprint
- Corner is less stable than single-row stacking
- Bags can be carried up earthbag steps
Questions Generated:
- What overall design best implements this technique?

Test #4, Wall #4 (7/18)
Purpose: Determine a method of allowing light through the earthbag wall
Results:
- Unsuccessful
- Plastic bottles deformed easily
- Limited light allowed through
- Bottles not easily secured through wall
- Staggering method didn’t work with bottles
Questions Generated:
- How do you allow adequate light to enter the structure?

Possible Future Direction:
- Determine more possible building iterations
- Discuss feasibility of project with NGO’s and camp administrators
- Design and test different roofing structures
- Put together simple step-by-step construction pamphlet
- Design and implement rainwater collection system
- Design a socially conscientious site plan for the refugee camp
- Test how to apply a protective earthen plaster

Supplementary Wall Transition Test (7/25)
Purpose: Determine how to attach other structural material to earthbag wall
Materials:
- Branches
- Bags
Results:
- Natural bond beam required for top two rows of earth bags

Supplementary Shear Test (7/23)
Purpose: Determine lateral stability of top bags
Parameter 1:
- 20 ‘tamps’ spread over 2 bags
Results:
- Less than 0.5” movement
Parameter 2:
- 20 ‘tamps’ spread over 1 bag
Results:
- 23” lateral movement

Acknowledgements:
We would like to thank the following people for guiding and helping us during our project: Lehigh University, EI-STEPS Summer Research Program, Rick Weisman, Mark Orrs, Alan Snyder, Van Dobson, Dan Zeroka, Andrew Schaefer, Davd Humphries, Anooradha Iyer Siddqui, Brian Slocum, Mike Moore, Kevin Rybeck, and the Spencer Family.