The Utilization Of A Windmill For The Extraction of Water From Wells In Western Kenya

Authors: Manraj S. Matharu, Bioengineering, Class of 2015
Gregory Jacobs, Electrical Engineering, Class of 2016
Advisors: Richard Weisman, Mark Orrs

Introduction
Throughout most of the Western world, the generalization that underdeveloped countries lack access to water is unanimously understood. In response, multiple governmental and nongovernmental organizations have taken on the feat of permanently eliminating this issue. The issue being that water is currently obtained in most villages by an individual tossing a container into a deep hole, and pulling out the collected water. Most commonly, the solution would include aid workers digging a well in a densely populated village, and attaching some rendition of a lever-action pump to the enclosed top surface. Unfortunately, this approach dwells a number of problems, including its financial setback, inefficiency, functionality, feasibility, lifetime, and overall social impact. Taking this into consideration, and also from the inspiration of William Kamkwamba, the project completed through Lehigh University’s Sustainable Development Laboratory consisted of developing an entirely sustainable and simple, wind-driven water extraction system. More specifically, the product is a windmill that uses mechanical energy to drive a spool containing a string of cups holding water out of a well and into a separate reservoir for easy and unlimited access. Except for two elements, the system is composed of natural resources found throughout Western Kenya, the primary area of focus. The setup incorporates bamboo, sisal (rope), plywood, two steel bearings, and a steel rod. In essence, the mission of the project was to develop a do-it-yourself manual for the construction of a windmill out of natural resources in sparsely populated regions of Kenya. Which in turn, will provide an efficient means for pumping water out of pre-existing wells. The creation of such a product will supply villages with malleable instructions to promote ingenuity, save young women and the elderly the struggle and time of attaining water from both the bucket-extraction mechanism and inefficient pumps, and equip villages with the ability to formulate a good that can be maintained and improved upon based on the capacity and potential of the village itself rather than a foreign group. The result of the 10-week period included the generation of all parts necessary for the final assembly of the windmill.

Results
After the completion of 10 weeks of work, the results of the project include extensive research on wind power and the country of Kenya as a whole, as well as all parts fabricated for the final assembly of the proposed windmill. Additionally, the task of making preparations for future work was initiated. For this particular project, the basic design behind the typical farmers windmill was used as a template since it is attempting to achieve a similar goal. Therefore, there was no reason to reinvent the wheel. The problem was tackled by initially constructing the bucket system, which includes sisal, bamboo cups and small rods for stability when maneuvering over the spool.

Impact
The significance of the windmill project and its associated goals can be broken down into both a macroscopic and microscopic level. Broadly, the intentions of the project impact the underdeveloped regions of Africa in terms of its water shortage. Limited supplies and resources relinquish the fate of access to drinking water to the work of humanitarian organizations and the perseverance of select villagers. Currently, the commonly employed method is for laborers to dig a hole into the ground until an aquifer is found. Subsequently, various containers are tied to rope and utilized in extracting water; simply, by tossing in the container and pulling the rope back up. Not only is this process inefficient, but it is also a large toll on an individual’s time allotment; which in this case, tends to be the time of young women. Consequently, causing them to miss school and hinder their progress for attaining an education because they are not only walking great lengths to acquire the water, but are also usually sitting in line for their turn to collect. Thus, the impact of the windmill project is that it subsides the numerous frustrations associated with water gathering by autonomously pumping water 24/7.

Future Work
As a result of the work completed throughout the summer, there are a few routes that the project can and will take. First, a prime location for the windmill will be found for its permanent placement. This location will need to mimic that of West Kenya. Thus, there will need to be a large body of water to represent the winds of Lake Victoria, as well as limited obstructions from buildings and large households, as that of common Kenyan villages. Once the windmill is mounted, its performance can be tested and optimized by modifying the key components of the design. Once complete, the second objective will be to develop an easy to comprehend instruction manual for village distribution. The most efficient plan will include partnering with a nonprofit organization already established in the area of interest, such as The Feed Project, to aid in circulating our documents amongst local and remote villages. Finally, as Kenyans, and Africa in its entirety, learn to use our sustainable windmill, a common theme as to why wells built by outside organizations break down within the first 1.5 years can be investigated. That is to say, the final goal would be to invent a universal tool or part necessary to maintain the functionality of these wells and dramatically enhance their overall lifetime.